La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o también «a elevado a la n». Hay algunos números exponentes especiales como el 2, que se lee al cuadrado o el 3, que le corresponde al cubo. Se debe notar que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo totalmente general la base será un elemento del anillo pero el exponente será un numero natural que no tiene por qué pertenecer al anillo. En un cuerpo el exponente puede ser un numero entero.
propiedades de la potenciacion
- multiplicación de potencias de igual base
Observa el siguiente ejemplo:
23 . 23 . 23 . 23 = 23+3+3+3 = 2 3.4 = 212
Observa que el resultado de multiplicar dos o más potencias de igual base es otra potencia con la misma base, y en donde el exponente es la suma de los exponentes iniciales.
- Cociente de potencias de igual base
Veamos cómo se haría un cociente de potencias de igual base:
58 : 54 = 58 - 4 = 54 = 625
Observa que el resultado de dividir dos potencias de igual base es otra potencia con la misma base, y en donde el exponente es la resta de los exponentes iniciales.
El resultado de calcular la potencia de una potencia es una potencia con la misma base, y cuyo exponente es la el producto de los dos exponentes. Por ejemplo:
(23)5 = 23.5 = 215
- Distributiva respecto a la multiplicación y a la división
Para hacer el producto de dos números elevado a una misma potencia tienes dos caminos posibles, cuyo resultado es el mismo:
Podes primero multiplicar los dos números, y después calcular el resultado de la potencia:
(4·5)4 = 204= 160000
O bien podes elevar cada número por separado al exponente y después multiplicar los resultados.
(4·5)4 = 4 4 . 54 = 256·625 = 160000
De forma análoga podes proceder si se trata del cociente de dos números elevado a la misma potencia.
(3 : 2)4 = 1, 5 4 = 5, 0625
(3 : 2)4 = 34 : 24 = 81 : 16 = 5,0625
Observa que de las dos formas obtienes el mismo resultado. Ahora bien, no siempre será igual de sencillo de las dos formas. Así que piensa de antemano qué método va a ser más conveniente para realizar el cálculo.
- NO distributiva respecto a la suma y a la resta
No se puede distribuir cuando dentro del paréntesis es suma o resta:
Por ejemplo:
(6 + 3)2 ≠ 62 + 32 porque (6 + 3)2 = 92 = 81
62 + 32 = 36 + 9 = 45
81 ≠ 45
(10 - 6)2 ≠ 102 - 62 porque (10 - 6)2 = 42 = 16
102 - 62 = 100 - 36 = 64
16 ≠ 64